
Strongly Connected
Components

Darren Peng

What is a strongly connected component?
A directed graph is strongly connected if there is a path between all pairs of vertices.

Note that a single node can be a SCC if it doesn’t form a bigger SCC with other nodes.

Kosaraju’s Algorithm

Step 1: Perform DFS traversal of the graph. While traversing, push nodes to stack
when exhausted all outgoing edges.
Step 2: Find the transpose graph by reversing the edges.
Step 3: Pop nodes one by one from the stack and again to DFS on the modified graph.

Time complexity: O(V+E)

Example step 1

Push node 3
because we’ve
exhausted all its
edges. Can’t
revisit visited
nodes

Example step 1

Example Step 1

Example step 2

Example step 3

1) Pop 0 out of stack
2) DFS traversal of all

nodes we can reach
3) Stop when we reach a

visited node
4) Skip all visited nodes

when we pop out of
the stack

Note that this is the
transposed graph.

Example step 3

Example step 3

Code
Step 1: Perform DFS traversal of the graph. While
traversing, push nodes to stack when exhausted all
outgoing edges.
Step 2: Find the transpose graph by reversing the edges.
Step 3: Pop nodes one by one from the stack and again
to DFS on the modified graph.

Tarjan’s Algorithm

● As opposed to Kosaraju’s algorithm, Tarjan’s algorithm only needs one DFS traversal.

● Low-link values: The low-link value of a node is the smallest node ID reachable from that node
when doing DFS, including itself.

● However, there is a catch with doing a DFS on the graph, as it is highly dependent on the
traversal order of the DFS, which is effectively random.

The Catch

Right Wrong

Order of assignment differs. Depending on where the DFS starts, and the order in which nodes/edges are visited, the
low-link values for identifying SCCs could be wrong.

Tarjan’s Algorithm Notes
● To cope with the random traversal order of the DFS, Tarjan’s algorithm maintains a stack

of valid nodes from which to update low-link values. Nodes are added to the stack of valid

nodes as they are explored for the first time. Nodes are removed from the stack each time

a complete SCC is found.

● Update condition for low-link value: If u and v are nodes in a graph and we were currently

exploring u, then our new low-link update condition is, to update node u to node v

low-link there has to be a path of edges from u to v and node v must be on the stack.

● O(V+E)

Step by step Tarjan’s

● Mark the id of each node as unvisited.

● Start DFS. Upon visiting a node assign it an id and a low-link value. Also mark the current

nodes as visited and add them to a seen stack.

● On DFS callback, if the previous node is on the stack then min the current node’s low-link

value with the last node’s low-link value.

● After visiting all neighbours, if the current node started a connected component and it has

exhausted all its outgoing edges then pop nodes off stack until current node is reached.

Animation

● First number is the id of the node.
● Second number is the low-link value.
● As seen by node with id 3, node 3’s low-link

value will be updated to 1 because 1 is on
the stack. Then the DFS call back updates
the low-link value of node 2 because node 3
is in stack. Node 2 will be updated to node
3’s low link value. Note that we don’t go to
visited nodes.

● The low link value and the id of the final
node will be the same.

Pseudocode

Pseudocode

Problems

https://usaco.guide/adv/SCC?lang=cpp

https://www.hackerearth.com/practice/algorithms/graphs/strongly-connected-components/pr

actice-problems/

https://usaco.guide/adv/SCC?lang=cpp
https://www.hackerearth.com/practice/algorithms/graphs/strongly-connected-components/practice-problems/
https://www.hackerearth.com/practice/algorithms/graphs/strongly-connected-components/practice-problems/

Questions?

